
Deep dive on CDK
Developing constructs & libraries

Andreas Sieferlinger

 @webratz@hachyderm.io

https://github.com/webratz/cdk-lib-examples

Who has already actively worked
with AWS CDK?

Who has already written CDK
constructs and shared them in
any way?

I want to create my own CDK
construct library!

But how do I get started?

What language do I write this in?

What tools do I need?

How can I make it easy to use and configure?

How do I make sure this continues this continues to
work?

Project setup 01

What is projen even?

Projen is a project generator - like a cookiecutter,
but re-generates each file every time.

● Same origins as CDK
● Similar concepts as CDK
● Typescript
● One single config file for complete project setup
● Opinionated
● Ensures state = overwrites manual changes

When to use?

● Great if you don’t have a company wide
standard project setup (for TS) yet

● Happy with default toolchain and setup
provided by it

● Fine to invest bit more time to learn and have
slightly different workflow

Should I use projen?

typescript

● Same language as upstream CDK
● Can be used with other supported languages via

jsii
● Wide range of examples
● Easy to learn
● Can be easier to debug with upstream CDK

Which language to choose for your library?

[python|java|golang|c#]

● Only target is users in exactly one of these
languages

● Technically can’t use typescript (eg
organizational restrictions)

Language choices

pro

● Code can be used with all target languages
● Many checks & rules to avoid incompatibilities
● Create simple API docs out of the box

Friend or foe?

con

● Restricts several typescript language features
● 3rd party libs might be incompatible
● Used to only support outdated typescript

versions (fixed in recent releases)

jsii

https://aws.github.io/jsii/user-guides/lib-author/typescript-restrictions/

Constructs 02

Directly adding
additional properties

● Quick and easy be
extending original
interface

● Risk of overlapping with
existing or later added
properties

● Useful for “default”
constructs with few
additional settings

Only expose custom
settings

● Restricts users to only allowed
parameters

● More complex to override
defaults

New Interface with
original props

● Full flexibility
● Clear what belongs

where (for multiple
resources)

● Slightly different
interface than default

● Use Partial<>

Constructs that add defaults to existing constructs

Passing properties to default constructs

Naming in CDK / CloudFormation libs

Not explicitly naming
resources

● CDK / cloudformation
auto generates unique
names

● No risk of name clashes!
● Hard to read names

Naming resources

● Predictable resource names
● Easy readable
● Potentially more useful

information
● Might require resource

destruction on change
● Risk of duplicate names

Tenets for libs

● Needs to be deployable
multiple times, within
Stack and Account

● Default to not naming
things explicit

Naming resources

● Follow AWS CDK Design Guidelines
● IDs need to be unique in Scope only
● Variables should not be added to IDs - use a new Construct level then
● IDs should be in PascalCase
● Changing IDs is a breaking change / change of contract!

Naming in CDK / CloudFormation libs
Naming constructs via IDs

https://github.com/aws/aws-cdk/blob/main/docs/DESIGN_GUIDELINES.md#construct-ids

Offload to user

● Create once on higher level
● Pass in as mandatory property
● Inconvenient for users

Singleton pattern

● Detect if resource is already there
● Only created when not yet in tree
● Invisible to users

Avoiding duplicate shared constructs within a Stack

Testing 03

See also Talk at 12:30 in “Wien”
Building Reliable Serverless Applications with AWS
CDK and Testing

Unit tests

● Quick & easy to write
● Use many, but small ones

Integration test

● Often need more effort & time to create
● Have fewer in number but wider in scope
● Only run once (without change) - do not

significantly slow down your pipeline!
● Ensure multiple deployments in same

environment can work
● Need to take special care for cleanup of

resources with persistent data

Integration test vs unit tests

Jest beforeEach

● Built in
● Only works for standard patterns

Setup helper function

● Can accept props
● Make use of Partial for less code (even with JSii)

Reducing repeated test code

Checking &
enforcing changes on all constructs 04

On Stack level

● Can be soft enforced via qualifiers (see
bootstrapping)

● Easy to remember to use “MyCompanyStack”

Applying defaults and running checks

Adding hook construct

● Needs to be added as additional resource once
in tree

● No need to have custom variant of core
construct like Stack

● Bundling of multiple aspects (eg adding
cdk-nag)

Hooking into users code

