Deep dive on CDK

Developing constructs & libraries

Andreas Sieferlinger

@ @webratz@hachyderm.io

https://github.com/webratz/cdk-lib-examples

Forsoms

Who has already actively worked
with AWS CDK?

Who has already written CDK
constructs and shared them in
any way?

| want to create my own CDK
construct library!

But how do | get started?

What language do | write this in?

What tools do | need?

How can | make it easy to use and configure?

How do | make sure this continues this continues to
work?

Project setup

01

Should | use projen?

What is projen even?

Projen is a project generator - like a cookiecutter,
but re-generates each file every time.

Same origins as CDK

Similar concepts as CDK

Typescript

One single config file for complete project setup

Opinionated

Ensures state = overwrites manual changes

When to use?

e Great if you don’t have a company wide
standard project setup (for TS) yet

e Happy with default toolchain and setup
provided by it

e Fine to invest bit more time to learn and have
slightly different workflow

A\

import { awscdk, javascript } from 'projen';
const project = new awscdk.AwsCdkConstructLibrary({
author: 'Andreas Sieferlinger',
‘andreas.sieferlinger@personio.de’,
2.92.0"',
3ranch: 'main',
jsii ~5.0.0"',
name: 'cdk-1lib-examples’,

projenrcTs:

fepésLtoryUrL: ‘https://github.com/webratz/cdk-1lib-examples.git’,

b

tratlingComma: javascript.TratlingComma.ALL,
singleQuote: ;
printWidth:

tabWidth:

Language choices
Which language to choose for your library?

typescript

e Same language as upstream CDK

e Can be used with other supported languages via
jsii

e Wide range of examples

e Easy tolearn

e Can be easier to debug with upstream CDK

[python|java|golang|c#]

e Only target is users in exactly one of these
languages

e Technically can’t use typescript (eg
organizational restrictions)

A\

jSi. Js v e
Friend or foe? I I

pro con
e Code can be used with all target languages e Restricts several typescript language features
e Many checks & rules to avoid incompatibilities e 3rd party libs might be incompatible

e Create simple API docs out of the box e Used to only support outdated typescript

versions (fixed in recent releases)

A\

https://aws.github.io/jsii/user-guides/lib-author/typescript-restrictions/

Constructs

Passing properties to default constructs

Constructs that add defaults to existing constructs

Directly adding
additional properties

e Quick and easy be
extending original
interface

e Risk of overlapping with
existing or later added
properties

e Useful for “default”
constructs with few
additional settings

Only expose custom
settings

e Restricts users to only allowed
parameters

e More complex to override
defaults

New Interface with
original props

Full flexibility

Clear what belongs
where (for multiple
resources)

Slightly different
interface than default
Use Partial<>

A\

| export interface CustomBucketProps extends s3.BucketProps {

readonly dataAccessEnabled?: boolean;

export class CustomBucket extends Construct {
public bucket: s3.Bucket;
constructor(scope: Construct, id: string, props: CustomBucketProps = {}) {
super(scope, id);

new s3.Bucket(this, 'CustomBucket', {

“ess: s3.BlockPublicAccess.BLOCK_ALL,

)
Alias.fromAliasName(this, 'KmsKeyAlias', 'data'),

Tags.of(this.bucket).add('dataAccess:enabled', String(props.da

export interface CustomBucketPropsHidden {

readonly dataAccessEnabl : boolean;

readonly versioned?: boolean;

export class CustomBucketHidden extends Construct {
public readonly bucket: s3.Bucket;
constructor(scope: Construct, id: string, props: CustomBucketPropsHidden = {}) {
super(scope, id);

ket(this, 'CustomBucketHidden', {

.BlockPublicAccess.BLOCK_ALL,

Key: Alias.fromAliasName(this, 'KmsKeyAlias', 'data'),

bled:

))
versioned: pt ops.versioned ??

export interface CustomBucketPropsSeparated {

readonly dataAccessEnabled?: boolean;

readonly bucketPr ?: s3.BucketProps;

export class CustomBucketSeparated extends Construct {
public bucket: s3.Bucket;
constructor(scope: Construct, id: string, props: CustomBucketPropsSeparated = {}) {
super(scope, id);

.Bucket(this, 'CustomBucket', {

s3.BlockPublicAccess.BLOCK_ALL,

b
: Alias.fromAliasName(this, 'KmsKeyAlias', 'data'),

Enabled:

)

Naming in CDK / CloudFormation libs

Naming resources

Not explicitly haming
resources

e CDK/ cloudformation
auto generates unique
names

e No risk of name clashes!

e Hard toread names

Naming resources

e Predictable resource names
e Easy readable

e Potentially more useful
information

e Might require resource
destruction on change

e Risk of duplicate names

Tenets for libs

e Needs to be deployable
multiple times, within
Stack and Account

e Default to not naming
things explicit

A\

Naming in CDK / CloudFormation libs

Naming constructs via IDs

Follow AWS CDK Design Guidelines
IDs need to be unique in Scope only
Variables should not be added to IDs - use a new Construct level then

IDs should be in PascalCase
Changing IDs is a breaking change / change of contract!

000

1 new CustomBucket(stack, 'ExampleBucket', { bucketName:

‘example-bucket'

F)s

A\

https://github.com/aws/aws-cdk/blob/main/docs/DESIGN_GUIDELINES.md#construct-ids

Avoiding duplicate shared constructs within a Stack

Offload to user

e Create once on higher level
e Passin as mandatory property

e Inconvenient for users

Singleton pattern

e Detect if resource is already there
e Only created when not yet in tree

e |nvisible to users

A\

00

| export class LowerCaseHelper extends Construct {

public static lower(scope: Construct, id: string, inputString: string) {
const stack = Stack.of(scope);
const lcInstance =
(stack.node.tryFindChild('FGEC1999C1lcHelper') as LowerCaseHelper) ??
new LowerCaseHelper(stack, 'FGEC1999ClcHelper');

if (id.includes('${Token')) {

throw new Error(id contains a Token string: ${id});

}

const lowerHelper = new CustomResource(scope, "LowerCase${id} , {
serviceToken: lcInstance.lowerCaseProvider.serviceToken,
properties: {
inputString: inputString,
}7
)¢

return lowerHelper.getAttString('transformedString');

Testing

03

See also Talk at 12:30 in “Wien”

Building Reliable Serverless Applications with AWS
CDK and Testing

Integration test vs unit tests

Unit tests

e Quick & easy to write
e Use many, but small ones

Integration test

e Often need more effort & time to create
e Have fewer in number but wider in scope

e Only run once (without change) - do not
significantly slow down your pipeline!

e Ensure multiple deployments in same
environment can work

e Need to take special care for cleanup of
resources with persistent data

A\

000

const bucketName = 'cdk-integ-test-custombucket';
2 export class TestStack extends Stack {
resource: IBucket;
constructor(scope: Construct, id: string, props?: StackProps) {
super(scope, id, props);
this. ce = new CustomBucket(this, 'MyCustomBucket', {
b tName: bucketName,
RemovalPolicy.DESTROY,
}).bucket;

I
2 const app = new App();
const testCase = new TestStack(app, 'CdkIntegBucketStack', {});

5 const integ = new IntegTest(app, 'BucketIntegTest', {
testCases: [testCase],

Ik

) const message = integ.a rtions.awsApiCall('S3"', 'listObjectsV2', { Bucket: bucketName });

message.provider.addToRolePolicy({
'Allow',
['s3:ListObjectsV2', 's3:ListObjects', 's3:ListBucket'],

message.expect(
ExpectedResult.objectLike({
Name: bucketName,

Reducing repeated test code

Jest beforeEach

e Builtin

e Only works for standard patterns

Setup helper function

e Can accept props
e Make use of Partial for less code (even with JSii)

A\

ribe('Private

function getT
const app
const sta
const bu
const tem
return {

const { ¢
const

test('SSE Alo

S3 Bucket Security configuration', () => {
Partial<CustomBucketProps>) {

estAs s(prop
new App();

ck = new Stack
t

plat

Annotation

r(tx,

rithm is KM

Match.

Configu

: Match.anyV
ptionByl U

Match.

A\

Checking &
enforcing changes on all constructs

04

Hooking into users code
Applying defaults and running checks

On Stack level

e Can be soft enforced via qualifiers (see
bootstrapping)

e Easy to remember to use “MyCompanyStack”

Adding hook construct

e Needs to be added as additional resource once
in tree

e NoO need to have custom variant of core
construct like Stack

e Bundling of multiple aspects (eg adding
cdk-nag)

A\

00
| export class S3Aspect implements IAspect {
/ public visit(node: IConstruct): void {

if (node instanceof s3.CfnBucket) {

node.versioningConfiguration = { status: 'Enabled' };

export class S3Checks extends Construct {
constructor(scope: Construct, id: string) {
super(scope, id);
const stack = Stack.of(this);
Aspects.of(stack).add(new S3Aspect());

